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The Numerical Solution of Some Important

Transmission-Line Problems

HARRY

Abstract—The generalized numerical solution of Laplace’s

equation in two dimensions is dealt with, subject to boundary condi-

tions imposed by conducting surfaces and dielectrics which are per-

mitted a limited amount of inhomogeneity. It is shown how this solu-

tion may be applied in the determination of the properties of TEM-
mode transmission lines including the equivalent circuits of simple
obstacles in these lines. The theory is illustrated with a number of
examples, certafn of which do not appear to have been previously
treated theoretically in the literature. While certain of the examples

serve mainly to show the power of the technique, others are given

very detailed treatment with the production of much new design

data.

I. INTRODUCTION

T

WO I lM PO RTANT CLASSES of problems in

transmission-line engineering, each requiring the

solution of Laplace’s equation, will be treated.

The aims of the paper are:

1)

2)

3)

4)

To outline these problems,

To present the mathematical theory for their

numerical analysis,

To summarize the numerical analysis procedures

and their use in constructing a computer program

To give an extensive collection of important engi-

neering results that have been obtained.

The first class of problem is concerned with the

determination of the characteristic impedance and

propagation constant of TEIVf-mode transmission lines.

For engineering exploitation an accurate knowledge of

the basic parameters of these lines is necessary. Because

the mode is TEM, having components of neither the

electrical nor the magnetic fields in the direction of

propagation, the determination of these constants re-

quires a study of the fields only over the line cross

section, within which they must obey Laplace’s equation

and the imposed boundary conditions.

The second type of problem considers the outcome

when the longitudinal uniform ity of a TEL( mode line

is interrupted by the insertion of an obstacle. The

regions of inhomogeneous field so generated can often

be represented by equivalent circuits referred to suit-

ably chosen reference planes enclosing the obstacle. In

certain special but important cases, the parameters of

these equivalent circuits can be found by solution of

the Laplace equation within the inhomogeneous region.
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Despite the success of modern analysis there remain

many problems of engineering importance of both types

which either were left unsolved or were treated approxi-

mately and with varying success. This is particularly

true where not only do the boundary conditions imposed

by the conductors have to be taken into account but

also, additional constraints are imposed by the presence

of an inhomogeneous dielectric medium. The numerical

techniques that form the subject of this paper must then

be employed.

II. THEORY

A. Numerical Analysis Theory

It must be made clear from the outset that this work

is concerned exclusively with two-dimensional systems

whose boundaries can be represented as a series of con-

stant coordinate curves in either

1) Cartesian coordinates, or

2) cylindrical coordinates, with the restriction of

rotational symmetry

In each case a special kind of inhomogeneity in the di-

electric medium will be permitted. That is, two di-

electrics may be present, one of which is free space, and

the whole dielectric is considered to be made up by the

juxtaposition of discrete blocks of these dielectrics, i.e.,

the inhomogeneities are stepwise. “Dielectric,” will be

defined, hereafter, to mean the nonfree space portion.

Cartesian problems require the solution of the

equation

~2J7 ~,v

~++=o (1)

while in cylindrical coordinates the following equation

must be solved:

a’~ 1 av aw-
~+y-+~=o. (2)

The numerical solutions of both these equations have

much in common and it will suffice here to develop the

argument for the Cartesian case only. The treatment of

cylindrical problems is given in Appendix A.

Consider the two-dimensional problem shown in Fig.

1. For the present, some generality may be sacrificed

without essential loss to the outline of the theory by

considering the medium between the conductors to be

homogeneous. Details of the treatment of inhomogene-

ous media appear in Appendix B. Imagine the region

676
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Fig. 1. Basic finite difference net.

between the conductors to be divided into squares by

a net of interlaced rows and columns. Although the

figure shows the conductors falling along these rows and

columns this is not an essential element in the theory.

However, for the purpose of organizing the problem on

a computing machine it is much easier if this is the case;

this restriction has been voluntarily imposed throughout

this work.

Consider a typical point P in the medium between the

conductors. The potential at P must satisfy (1). For nu-

merical computation, this equation can be reduced by

considering it in terms of the potential at P and its four

immediate neighbors, distant by the mesh width a in

each of the coordinate directions, Then applying Tay-

lor’s theorem in the X direction.

V~–Vp=a~+~~+$~+~ ~+

V.4–Vfl=-a~+~~-~ z+$~–,

adding, and then manipulating.

dzv VA+ v. – 2vp a2 f34V—
r?.x~– a’ – 12 t)x’ –

VA+ VB– 2vp
—

a’ ‘
(3)

i.e., an approximation has been obtained to the second

derivative, accurate within the order a2, and which can

be arbitrarily refined by decreasing the mesh width.

The same argument may be applied in the V direction.

Combining this with (3), (1) for P reduces to

VJ+VB+VC+VD–4VP =,0 (4)

and this may be extended to every other point in the

medium. For nodes on the conducting boundaries by

definition

VP = Vll (5)

where VO is the boundary potential.

The original problem, therefore, was rejplaced by one

which gives an approximate representation in terms of

simultaneous linear equations, i.e., a complex analytic

problem was reduced to solving simultaneous equations.

B. The .Solution of Large Groups of

Simultaneous Equations

Although the problem undoubtedly has been simpli-

fied it is not all gain since an adequate representation n of

the original problem demands a large group of simul-

taneous equations which need special techniques for

solution, i.e., the basic problem now is one of coping

with the large amount of arithmetic involved.

Solution by digital computer has been receiving much

attention during the last ten years and is now the

subject of a large and increasing volume of literature [1].
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Of the many possible processes for the solution of the

simultaneous equations arising in the finite difference

treatment of partial differential equations, the one

which seems best suited to a digital machine is succes-

sive over-relaxation (SO R). This has the advantages of

1)

2)

3)

SO R

involving only the constant repetition of a small

group of machine orders,

allowing the data relating to substantially large

problems to be retained entirely in core, and

being terminable when any desired degree of

accuracy has been attained. This is important

since it is fruitless to solve what is, after all, only

an approximation to the actual problem to an

accuracy greater than that of the approximation.

may be defined as the relaxation cycle [2],

whereby a gradually improving solution is obtained to

the simultaneous equations written in matrix form as

where

ai~, V;, bj are elements of the matrices A, V, 1?,

respective y,

j measures the number of iteration cycles,

n is the number of simultaneous equations, and

Q is the accelerating factor.

The method is convergent if 0< Q <2, and most rapidly

convergent for some i% between 1 and 2.

For efficient computation the crux of the problem is to

determine the optimum accelerating factor L?o. Frankel

[3] showed that this is dependent upon the largest

eigenvalue of a certain matrix derived from .4 and itself

dependent on QO. In general, then, except in the most

trivial cases, it is just as difficult to solve for Q as to

do the actual problem, and it is generally not possible

to start the computation with a knowledge of this

parameter.

This difficulty was overcome by Carr6 [4] who de-

vised a method of determining QO with steadily improv-

ing accuracy as the calculation proceeds.1 While obvi-

ously not as fast as optimum SOR, it still saves consider-

able time when compared with other possible methods.

Carr6’s paper is also important in that in it he gives a

method for estimating an upper bound on the largest

remaining error after any complete iteration cycle. This

may be used as a terminating criterion.

1 In the solution of a few cylindrical coordinate problems, some
difficulty. has been experienced by. early estimates of accelerating
factor being greater than tw~. The ddlicujty was ?vercome by setting
a ceiling value of 1.95 on this factor. This early instability soon dis-
appears and a clos~ approximation to the optimum QO.is ultimately
found. An explanation of this anomalous behavmr is gwen in [5].

C. Determination of Transmission-Line Constants

The way is open to compute the constants of trans-

mission lines if a nodal potential distribution is known.

Capacity is the first constant sought and for some pur-

poses, e.g., equivalent circuits of discontinuities, this is

also the final result.

To obtain capacity it is prerequisite to determine the

charges on the conductors. These may be found by

Gauss theorem [6], requiring the integration of the

normal component of electric displacement over a

surface enclosing the conductor. Forming this surface

by lines joining nodal points drawn parallel to the co-

ordinate directions, as shown in Fig, 2, at any point P

on this surface

(7)

where

D. is the normal component of displacement,

En is the normal component of electric intensity, and

n is the normal coordinate,

By the same Taylor expansion as used earlier the deriva-

tive of the potential at P may be expressed numerically

in terms of the known potentials of the nodes A and B

on each side of it, with an error in the order of a~, as

av v. – VA

dn= 2a”
(8)

It is now easy to apply Gauss’ theorem. Thus, if the

surface containing the conductor consists of s straight

line segments each containing r nodes, the charge per

unit length normal to the cross-section is given by

(9)

where the symbol ~’ is used to indicate that the first

and last terms in the summation are halved. This is seen

to be equivalent to integration by the trapezoidal rule,

known to involve a dominant error in the order az, and

is therefore consistent with the whole finite difference

process.

From charge capacity it follows that

C = QV,–’ (lo)

where Vt is the potential difference between the conduc-

tors. Given capacity, characteristic impedance follows

without difficulty, although two cases need to be dis-

tinguished, If the medium within the line is homogeneous,

Zo=+ (11)
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Fig. 2. Integration

where

v = vo,/~K, is the phase velocity in the medium

ZIo= the velocity of light in free space

(2.997925 X 108 m/s), and

K,= the dielectric constant of the medium.

If the medium is inhomogeneous, two steps are neces-

sary: the capacity is determined twice, once with all di-

electrics removed, and then with them present. Since

inductance per unit length is not altered by the intro-

duction of the dielectric (assuming, of course, that it is

nonmagnetic) it follows that

Zo = –—L ,
Vodcco

where

CO is the capacity without dielectrics,

C is the capacity with dielectrics present,

and that the phase velocity in the line is

(12)

(13)

It must be noted that this simple argument is not

flawless. It is not difficult to see that a line having a

NET
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to determine charge.

discontinuous medium over its cross section cannot sup-

port a pure TENI wave. However, the error in assuming

that it can, although frequency dependent, is usually

minute, not amounting to more than a fraction of a per

cent at frequencies of several Gc/s. A further discussion

is given in ihlarcuvitz [7] and Griemsmann [8].

D. Improving the Solution by ext~apolation

Southwell [9], considering hand-relaxation methods

seems the first to postulate the idea of ‘(advancing to a

finer net” in order to speed computation. In this method,

the computation is commenced on a coarse net using any

assumed starting solution. (The computer pro~ram

starts by assuming that all interior nodles are at zero

potential.) The answers thus obtained are used as a

starting point for solution on a more refined net, and so

on, as required. This process may be equally well em-

ployed in a digital machine with the same consequent

saving of time, but more than this simple advantage

results.

Based upon earlier w-or-k by Richardson [1 O], Culver

[11 ] showed that the solution obtained from increas-

ingly fine nets may be combined to extrapolate a Inore

accurate solution. Defining the “mesh number” as the

number of net widths abutting some defining dimens-

ions, say the side ST, in Fig. 1, then given solutions Cl,
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C,, and C, for the capacity at mesh numbers nl, nz, and

ns (nl > nz > ns), a better solution is

C = b@3 – b2C2 + b~C~ (14)

where

b, = ZZ1’(n,’ – n,2)/D

bz = ?’3s4(??32– ~12)/D

bz = nS4(tiJ – n12)/D

D = n121~22(z# – Z12) – 7Z12;Z32(J232 – ~Z12) + 72221232(7232 – 7222),

provided that the approach of these solutions to the limit

is monotonic. To test monotonic convergence one com-

putes the ratio

a2C2— alC1
R=

a3C3
(15)

where

al = 7412(n32 — 1222)

a2 = ??22(*Z32 — 7’212)

a3 = J232(13Z2 — fi12).

For true monotonic convergence R is unity and in prac-

tice its closeness to unity gives a measure of the “good-

ness” of the extrapolation.

E. Determining the Accuracy of a Numerical Solution

Having found a numerical solution, it is important to

gain some idea of its accuracy. There does not, however,

appear to be any purely theoretical way of doing this.

The most positive way of making an estimate appears

to be a numerical development of a problem having a

known analytic solution, and one resembling the actual

problem as closely as possible, using in each case a com-

parable number of nodes. Estimates of accuracy made

in this way have suggested that with three- to four-

thousand nodal points, errors as low as one part in 10~

can be obtained in computing times not exceeding two

to three minutes. As far as characteristic impedance is

concerned this is an order or so better than allowed by

normal constructional and dielectric tolerances.

F. Programming Aspects

It is now profitable to consider a few of the program-

ming aspects. In the work that forms the subject of this

paper it proved possible to solve problems involving up

to 15000 simultaneous equations using an IB&’1 7090

machine. Clearly, to use this potential to advantage, it

is vital that individual problems be presented to the

machine in such a way as to require a minimum of

effort from the operator.

Ideally, if given a deck of data cards defining the

geometry of the problem, the machine should be able

to set up its own system of simultaneous equations, to

solve them, to automatically advance to a finer net if so

desired, to extrapolate the individual solutions, and to

print out answers in a readily interpreted format. This

problem of program organization proved to be more of

a test than the mathematics; however, it is a rare prob-

lem that cannot be completely solved, using no more

than twenty data cards. It is not appropriate to give de-

tails here of how these data cards are written but the

interested reader may consult Green [12 ].

After processing by the machine, in addition to the

print-out of charge and capacity, the facility for print-

out of the computed nodal potentials is also available

on demand. This is useful when it is necessary to see

whether the problem has been adequately represented

by the finite difference model or where a knowledge of

the field itself is desirable.

II 1. A SELECTION OF SOLVED PROBLEMS

The program just described was employed in the nu-

merical solution of a large number of transmission-line

problems, leading to the production of much useful

data. Some of these results have been published [13],

[14] but many of considerable importance will be pre-

sented in this section. Initially, attention will be given

to characteristic impedance determination, but later

subsections will discuss the equivalent circuits of a

selection of simple obstacles.

.4. Shielded Stripline

Stripline consists basically of an inner conductor

centrally placed between two plates or ground planes

having a width much greater than their spacing. In a form

frequently used it has an inner conductor consisting of

two thin strips of copper (typically about 0.006 inch

thick) formed to the desired width on each of the two

faces of a supporting dielectric board that spans the

width of the ground planes. In some applications, (such

as directional couplers [15]) a solid rectangular inner

conductor is used whereas in others, a dielectric support

strip with the dielectric not protruding beyond the

edges was substituted. Figure 3 shows these basic

cross sections.

Various attempts have been made to obtain analytic

solutions to this problem. In all cases the assumption

was made that the ground planes are of infinite width

and justified by the fact that the rapid exponential de-

cay sideways of the field allows this idealized model to

simulate practical cases with small error. Although this

is a good approximation it is not necessary in a num eri-

cal solution, and in practical strip-line circuits it is often

desired to close the ends of the cross section with metal

plates.

For the strip configuration” no direct analytic solution

that includes the dielectric board has thus far been pub-

lished [16 ]; two thin and unsupported strips were usu-

ally considered [17 ]. For the solid inner-bar configura-

tion, Collin’s variational solution [18], rather involved

for numerical computation, or Getsinger’s curves [19]

may be used. In this section numerical solutions to these

problems will be given and it will be shown that when

the dielectric board extends beyond the inner conductors

its neglect involves significant errors.
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Fig. 3. Principal forms of stripline. (a) Full dielectric support. (b) Partial dielectric support. (c) Solid inner conductor.

TABLE I

NUMERICAL DATA ON SHIELrmD STRIP-LINE
-.

Full Dielectric Sllpport [Fig. 3[ a)]
Strip

l~idth
[Inch)

Teflon Rexolite 2200 ‘ Air

Char. Imp. ~ Irel. Rat. Char. Imp. Irel, Rat. Char. Input Iel, Rat,
.—

0.1250
0.1563
0.1875
0.2188 58,75 0.9506 57.38 0.9285 61.81
0.2500 54.48 0.9540

1.000
53.29

0.2813 50.79
0.9332 57.11

0.9569
1.000

49.74 0.9372 53.07 1.000
0.3125 47.57 0.9594 46.43 0.9407 49.58
0.3438 44.72

1.000
0.9617 43.89 0.9348 46.50

0.3750
1.000

—

Note:
1. AH characteristic impedances are expressed in ohms.
2. Phase velocity ratio is given with respect to light in free space (2 .997925X 108 m/s).

The leading dimensions of the cross sections analyzed

numerically are shown in Fig. 3. Various strip widths

between one-eighth inch and three-eighths inch have

been examined, the principal aim being to determine the

width necessary to give 50-ohnls characteristic im-

pedance and, in the case of sections containing dielec-

trics, to find the corresponding phase velocity. Sym -

metry allows treatment of a quarter of the cross section.

Two dielectric constants corresponding to Teflon (2.05)

and Rexolite 22OO (2.65) were used. The results ob-

tained are summarized in Table 1. Table I I gives data

interpolated for 50-ohm line construction.

To test the accuracy of the results, solutions were

~~’orked out from analytic formulas for two thin unsup-

ported strips, and a solid inner bar. For the first of these

check problems Cohn’s [17 ] formula ~~as used. This is

Partial Dielectric
Support [Fig. 3(b)]

Sol id
_ Inner Bar

Rexolite 22OO
[Fig. 3(c)]

~har. Input

53.12

———
Yel. Rat. Char. Imp.

79.133

65.27

55.(52
0.9995

48. !7

I 42.35

TABLE 11

DATA FOR 50-OHM STRIP-LI~~ CONSTRUCTION

Type of Line

TeflOn support
Rexolite 22OO support
Thin unsupported strips
Solid inner har

Reference St; fqi’d
Figure

Fig. 3(a) 0,2891
Fig. 3(a) 0,27?1
Fig. 3(a) 0. 30s1
Fig. 3(c) 0.298

l:elocity
Ratio

——.——

0.9380
0. 93(59
1.00190
1.00100

—.

based on a Schw-arz-Christoffel conformal ‘kansfOrmatiC)n

solution for ground planes of infinite width and involves

an approximation, thought to be accurate to within 0.1

per cent for the test case (w= 9/32 inch) chosen, which

removes one vertex from the path of integration. Cohn’s

formula gives a characteristic impedance of 53.40 olnms;
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Fig.4. Slotted stripline. (a) Mechanical detaik. (b) Equipotential diagram.

comparison with the corresponding entry in Table I

shows agreement within 0.6 per cent. As an estimate of

error this will be a little pessimistic since the effect of

side walls, neglected in the analytic solution, will be to

slightly decrease the line impedance.

Since the error would probably not be significantly

altered when the dielectric card is present, this same

error would be expected in the computed impedances

with both Teflon and Rexolite 2200. The error in the

velocity ratio should, however, be much smaller as this

involves the quotient of two nearly equal quantities

having approximately the same error. For Rexolite

supported line a precise experimental measurement has

been made of the velocity ratio [14] which was found

to agree with the computed value to within 0.3 per cent.

The discrepancy can be easily accounted for by toler-

ances, particularly on the dielectric constant, and the

neglect of the finite thickness (about 0.006 inch) of the

strips.

For the solid inner bar, upper and lower bounds on

the characteristic impedance were computed from Col-

lin’s[18] formulas for a bar width of 5/16 inch, and found

to be 49.632 and 47.266 ohms, respectively. It will be

seen that the numerical solution lies between these

bounds and agrees with their mean within 0.04 per cent,

a good agreement. This case was not checked experimen-

tally.

To perform experimental work on stripline compo-

nents without the need of coaxial-to-stripline transitions

there is much to be said for having a slotted section

available. The probe may be introduced along either of

the axes of symmetry of the line; an apparatus in which

it enters from the side has been described by Cohn [20].

Alternatively a slot may be cut in the center of the

ground planes; this is less demanding mechanically since

the probe is then inserted in a region of the field where

the electric intensity vector has little or no component

transverse to it. If the wall thickness of the ground plane

is adequate, little slot leakage will result, but some com-

pensation to the width of the center strip is obviously

necessary if the characteristic impedance is to be main-

tained constant.

The slotted cross section shown in Fig. 4(a) was

studied with the aid of the computer. since the line is
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no longer completely closed one of the boundary condi-

tions to be met is that the potential at infinity is zero.

While the application of numerical methods to un-

bounded fields will be considered in greater detail in the

next section, it is satisfactory to say in the present in-

stance that this is met with sufficient approximation by

considering the slot to couple into a large conducting

box straddling the slotted ground plane. Assuming

Rexolite 2200 as the dielectric support material a strip

width of 0.286 inch was found necessary to maintain

50 ohms characteristic impedance. This represents an

increase in width of 0.007 inch over that in the absence

of the slot. The corresponding velocity ratio was found

to be 0.9360.

Since the field variation through the slot is clearly of

some interest Fig. 4(b) shows an equipotential diagram

for a slotted section having a 9/32-inch center strip. The

very closely exponential decay of the field along the slot

center line is most noticeable, indicating negligible

leakage.

B. hficrostrip Transmission Line

In recent years a new form of TEM-mode trans-

mission line, known as microstrip and shown in cross

section in Fig. 5, has come into use [21]. Although it is

mechanically very simple, mathematical analysis [22 ]

is extremely difficult even with simplifying assumptions

and most of the data available has been determined ex-

perimentally. This problem can however be handled

relatively simply by numerical means.

It will be observed from Fig. 5 that this is an un-

bounded problem, i.e., the electric field is not confined

within a finite region between the conductors, so that

one of the boundary conditions which must be incor-

porated is that the potential at infinity is zero. The

method of approximating this is by imagining the prob-

lem to be enclosed in a conducting screen of dimensions

large compared with the cross section of the line. It will

be noted, also, that this is a problem involving a mixed

dielectric.

Figure 6 shows plots of characteristic impedance and

velocity ratio for a line with a PTFE dielectric (assumed

relative permittivity 2.05) and where the width of the

top strip remains small compared with that of the

ground plane. An analysis of the effect of the screening

enclosure is given in Green [5] and for characteristic

impedance the results are estimated to be in error

by not more than one ohm in the range covered by

Fig. 5.

C. Steps in Coaxial Line

1) Single Steps in One Conductor Only: One of the

most important applications of the program has been

in the examination of the parameters of the equivalent

circuits of certain simple transmission-line obstacles

generated in the construction of bead supports, butt

transitions, filters etc. This work has been confined to

coaxial systems including, as a limiting case, parallel

plate lines.

&L’E’TR
l+—————g~

Fig. 5. Cross section of microstrip.

.la

.77
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Fig. 6, Properties of microstrip with PTFE dielectric (A-,:-= 2.05).

One of the most commonly occurring interruptions to

the longitudinal continuity of a coaxial line is the abrupt

step in either the inner or outer conductor of the line

(Fig. 7). It was shown by Whinnery, Jamieson~, and

Robbins [23] that this type of obstacle can be s-epre-

sented by a shunt discontinuity capacity at the plane of

the step, and that this capacity is invariant witlh fre-

quency if the dimensions of the line cross section remain

small fractions of the wavelength of excitation. IIIL most

coaxial line applications this is the case. An analytic de-

termination of this capacity was attempted with success.

For the parallel plate line a formula was obtained by

conformal transformation [24]. For coaxial lines the

conformal transformation procedure is not applicable

but the problem can be attacked by the mode-matching

method in which the fields on each side of the junction

are expanded in an infinite series of ]mocles matched

across the boundary to preserve continuity. This was
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Fig. 7. Step discontinuities in coaxial lines.

TABLE III

DISCONTINITITY CAPACITY IN COAXIAL LINE

T=l

0.10864
0.06977
0.04779
0.03291
0.02212
0.01408
0.00810
0.00382
0.00110
0.00000

Step in Inner Conductor

T=3

0.11072
0.07209
0.04975
0.03456
0.02344
0.01507
0.00877
0.00420
0.00123
0.00000

T=6

0.11308
0.07434
0.05184
0.03643
0.02504
0.01635
0.00969
0.00475
0.00143
0.00000

—
T=ll

0.11524
0.07642
0.05379
0.03821
0.02661
0.01765
0.01069
0.00539
0.00170
0.00000

T= .

0.13633
0.09630
0.07298
0.05643
0.04355
0.03298
0.02399
0.01612
0.00895
0.00000

Step h Outer Conductor

T=l T=3 T=6

0.10864 0. 1126+ 0.11248
0.06977 0.07377 0.08196
0.04779 0.05108 0.05763
0.03291 0.03545 0.04054
0.02212 0,02400 0.02773
0.01408 0.01537 0.01792
0.00810 0.00887 0.01064
0.00382 0.00418 0.00498
0.00110 0.00115 0.00143
0.00000 0.00000 0.00000

T=ll

0.13848
0,09503
0.06788
0.04831
0.03333
0.02168
0.01271
0.00610
0.00178
0.00000

Note:
Discontinuity capacities are given h pF/cm of circumference.

total capacity of a line section including a step, and thatthe approach used by Whinnery and his coworkers in

1944 and although theirs has been virtually the only

data available in that time their paper suffers from two

deficiencies that this new determination removes, viz.,

a)

b)

they do not consider diameter ratios beyond 5,

inadequate to meet many needs, and

they published their answers as rather small

difficult-to-read graphs. In scaling these up for

publication in handbooks, often it seems by re-

drafting, considerable reproduction errors have

occurred, causing values taken from various books

to differ by several per cent.

Discontinuity capacity can be computed numerically

by noting that it is equal to the difference between the

computed by adding the contributions of two single un-

perturbed lines with cross-sectional dimensions and

lengths equal to the actual lines on each side of the

step. In setting up a model on a digital computer the

observed fact that the inhomogeneous fields do not ex-

tend beyond the step that generates them by more than

a diameter of the outer conductor may be used to limit

the volume over which capacity must be calculated.

The line may therefore be terminated by magnetic con-

ductors one diameter each side of the step yet fully

include its effects.

This problem was run on the machine to give the dis-

continuity capacities per unit circumferential length

shown in Table III. Diameter ratios to 11 are considered.
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As a guide to the accuracy of the data the discontinuity

capacities obtained numerically for the limiting case of

parallel plate lines were compared with the conformal

transformation solutions. The agreement was found to

be very good, the average correspondence being 0.4 per

cent with an error exceeding one per cent only for the

case where the capacity is smallest.

This method of computation can be attacked as in-

efficient since it demands the calculation of the total

capacity to great accuracy to obtain an adequately small

error in the discontinuity capacity (typically only a few

percent of the total). While this is true, the computa-

tion time for the data presented in Table III averaged

no more than two minutes per point.

2) Steps in Both Conductors Simultaneously: In some

applications, such as a bead support required to restrain

the inner conductor against axial displacement, it is

necessary to undercut the inner conductor and overcut

the outer conductor at the same reference plane to pro-

duce a doubly opening out discontinuity. A circuit rep-

resentation of this double step by a single shunt capacity

is still legitimate but a problem arises in determining its

magnitude, Although there is no general case and any

individual problem can be treated either analytically or

numerically, it is obviously desirable to be able to use the

data given in Table III.

Consider the discontinuity shown in Fig. 8(a). In the

undisturbed field, regions R and S well away from the

step, the lines will be radial, and the potential in the

space between the inner and outer conductors will vary

logarithmically with radius. There will be a certain di-

ameter where the potentials in each of R and S are

equal. In terms of the notation of the figure this may

be determined readily as

or in the limiting case where the line has become a pair

of parallel plates [Fig. 8(b)]

bc
~=——

b+c–d
(17)

It is assumed that this equipotential surface will con-

tinue through the region of inhomogeneity without sub-

stantial deviation from cylindrical form. The discon-

tinuity thus splits into two series-connected sections,

each of which may be estimated from Table III.

This assumption is obviously rigorous in certain limit-

ing cases and its general validity has been examined by

comparing results obtained using it with direct numeri-

cal computations. Table IV shows typical cases. It will

be seen that agreement is within ten per cent.

3) Ppozimity Efects between Neighboring Disco ntinu -

ities: Often, to anchor a support bead, for example,

r CONTI NUOLIS EQUIPOTE NTIAL
SURFACE

OUTfiR CONDUCTOR
--’”.

T——t—— f
T_

1

R
1

s---- —— ___ __
—-F I

I -4------------—J I

~~1—_____l
INNER CONDUCTOR

(a)

r UPPER CONDUCTOR

.] ~l-;~~Lo./.RcoNDucToR
/

f!CONTINUOUS EQuIPOTENTIAL SURF:4CE

(b)

Fig. 8. Location of continuous equipotential surface through
double discontinuity. (a) Double step in coaxial line. (b) Double
step in parallel plate line.

T.ABLE IV

COMPARISON OF ACCURATE AND .%PPROXIMATE i?IETHODS I )F
COMPUTING A DOUBLY @wNING-Ou’r DISCONTINUITY

—

TYPE OF= LINE

PRALLEL PLATE

COAXIAL

COAX IAL

FIGURE

‘%-~1 i-

UL-’-L J-LJ

I

HkJ_

DISCONTINUITY CAPACITY (pF)
—.—

ACCURATE

0 597

0.298

<PPROXIM AT E
——

011[

057.4

Note:

1) Dimensions are given in centimeters.
2) For the parallel plate line, capacity is given per centi]neter

width normal to the section shown.
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(b)

Fig. 9. Proximity factor for double step in parallel plate line.
(a) Notation. (b) Proximity-factor curves.

Pr~jt&y Parallel
Coaxial Line ( 1“= 6)

Plate Line Inner Step Outer Step
—

A

T T’
k-

ML- ~
I I
, I

I
A

(a)

+--’‘+
‘0 ?=2!‘2?‘0

+1 I

A T’

(b)

i
TABLE V

COMPARISON OF PROXIMITY FACTOR (P) FOR PARALLEL PLATE LINE

T

T

2CI

AND A ‘{CORRESPONDING” COAXIAL LINE HAVING STEP RATIOS (~)
SHORT OR oPEN

OF 0.5 AND VARIOUS PROXIMITY RATIOS (B)
CIRCUIT.

o

TC2

0.0 0.000
0.604

R 0.873
0.6 0.969
0.8 0.996
1.0 1.000

Note:
See Fig. 9 for notation.

0.000
0.586
0.858
0.960
0.991
1.000

0.000
0.587
0.859
0.960
0.991
1.000

double step discontinuities, such as shown in Fig. 9(a),

are created. If the distance between them is short the

fringing fields generated at the steps interact in sucha

way as to decrease the effective discontinuity capacity

at each step from the value calculated in isolation. This

may be taken into account by multiplication with a

proximity factor P.

Using the notation shown in Fig. 9, a reasonably ex-

tensive table of proximity factors has been computed

for neighboring discontinuities in parallel plate line and

these are shown in that figure. The error involved in

applying these to discontinuities in coaxial line-where

the radius of curvature of the conductors is no longer

in finit~has been investigated. ‘(corresponding’) dis-

continuities in parallel plate and coaxial line having a

diameter ratio of 6 are compared in Table V. It is evi-

dent that there is negligible difference to the proximity

factor whether the step is cut in the inner or outer con-

bb d I
(c;

Fig. 10. Series gap in coaxial line and equivalent circuit. (a) Series
gap in coaxial line. (b) Equivalent circuit of gap. (c) Circuit for
analysis.

ductors, and that the divergence from the parallel plate

case does not exceed three per cent.

D. Capacitive Gaps in Coaxial Lines

1] General Theory: A gap cut in the center conductor

of a coaxial line in a plane normal to its axis finds com-

mon use in microwave band-pass filter construction

where its essential purpose is to introduce series capaci-

tive coupling. However, between the reference planes

TT’ in Fig. 10(a) its complete representation requires

the r capacitive network shown in Fig. 10(b). For de-

sign purposes it is necessary to know both the series and

shunt arms of the equivalent network. For gap and line

cross-sectional dimensions which remain small com-

pared with the wavelength, this may be treated as an

electrostatic problem and may be solved as follows.

Consider the circuit shown in Fig. 1O(C) in which a

length of coaxial line is terminated in “half -gap,” i.e., a

gap bisected by the plane AA midway between the
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TABLE VI
SERIES (CJ AND SHUNT (C2) Amus OF EQUIVALENT NETWORK FOR GAPS IN COAXIAL LINE

1
I
I

Gap
Ratio 1(

c1
— —

0.05 0.367
0.075 0.238
0.10 0.173
0.1.5 0.106
0.20 0.0718
0.25 0.0516
0.30 0.0383

Note:

9 14
—l—

c, I c,

Diameter R~ti~

3 5:3 2:1 2.3:1 3:1 5:1

c% c1 C2 c1 Cz c, c, c, c, cl c,

Iiiz- YiR- 0.00823 zG-- —
0.0206 0.127

0.00610 x — ‘ — — “—0.00509 0.0702 0.00386 0.0316 0.00262
0.0120 0.0946 0.00893 0.0757 0.00746 0.0498 0.00566 0.0231

0.0265 0.0960 0.01.S6 0.0719 0.0116 0.0578 0.00972 0.0384 0.00737 0.0183
0.00382

0.0366 0.0623 0.0221 0.0474 0.0166 0.0384 0.0139 0.0259 (J.I3105 0.0127
0.00496

0.0450 0.0443 0.0277 0.0340 0.0210 0.0277 0,0176 0.0188 0.0133
0.00670

0.00929 0.00872
0.0520 0.0328 0.0327 0.0254 0.0248 0.0217 0.0208 0,0143 0.0157 0.00701
0.0579 0.0249 0.0369 0.0194 0.0281 0.0161 0.0235 0.0109 12.1317t3 0.00537 ::!;$’:

Entries in this table are in PF/cm of outer conductor circumference.

reference planes TT’. Denoting the series and shunt

arms of the equivalent network of the total gap by Cl

and C.2, if a perfect short circuiting plane is inserted at

AA then the line section is effectively terminated to

ground through a capacity 2 Cl + Cz. If the short circuit-

ing plane is removed to be replaced by a perfect open

circuit (perfect magnetic conductor) then the line is

now terminated to ground through a capacity Cz.

To compute these capacities the total capacity of a

length of line terminated alternate y as just described is

calculated. To obtain valid answers the length must be

sufficient to ensure that the disturbance to the normally

purely radial electric field in the line has become insig-

nificant; some preliminary numerical calculations of the

potential distribution showed that a length equal to the

line diameter was sufficient to ensure this. In addition,

the capacity of an undisturbed section of line of this

same length is determined from the usual theory.

Simple arithmetic operations then suffice to deduce the

equivalent circuit parameters, an extensive collection of

which is given in Table VI,

2) Comparison of the Numerical Solution with Small

Aperture Theory: Marcuvitz [25], in treating a problem

related to that just given, found an approximate solu-

tion by using the small aperture technique. The geom-

etry of this problem, consisting of a coaxial cavity closed

at one end \vith a conducting cover plate from which the

inner conductor is shorter by a gap of width s/2, is

shown in Fig. 11 (a). In reference to the plane T, the

inner conductor is shown to be terminated to ground

through a capacitance [Fig. 11 (b)]

~az E b–a
c= —+2ae/in——.

2s
(18)

s

This formula is said to be valid under the restrictions

h>>b–a (19)

s<<b —a (20)

and can be seen to consist of two distinct parts, a com-

ponent giving the parallel plate capacity between the

inner conductor and the cover plate and a “fringing”

term.

It will be realized that C is to be compared with the

sum 2Cl+ C2. Although a direct check is not possible

due to the approximate nature of (18) a useful compari-

7:1

c, Cz
.— . .._
0.0196 0.010215
0.0111 0.00312
0.00707 0.012402
0.00822
0.00606 0.012687

0.012559

0.00461 0.00790
0.00352 0.00873

T

I

--J.&-
(a)

T

i
Z. * ~,

T
—L

(b)

Fig. 11. NIarcuvitz problem. (a) Cavity with foreshortened
inner conductor. (b) Equivalent circuit.

son may be made. For the smallest gap ratio treated,

agreement is within two-and-a-half percent even for the

10: 9-diameter-ratio case, which clearly violates in-

equality (20). This and the fact that the shunt com-

ponent must be zero at zero gap may be used to extend

the table to smaller gap widths than those listed.

E. Coaxial Bead Supports with Underczd Faces

When a dielectric support bead is introduced into a

coaxial line it is necessary to cut into one or both of the

conducting surfaces to pre’serve continuity of charac-

teristic impedance through the bead. This in itself gen-

erates a further mismatch since, as was pointed out in

Section III-C, the introduction of a step into the con-

ducting surfaces of a coaxial line is electrically equ’iva-

Ient to inserting a shunt capacity at the plane of the

step. Various schemes were developed fcx the brc~ad-

band compensation of the mismatch and two of the

more effective ones are shown in Fig. 12. These schemes

have been studied empirically in great detail by Kraus

[26] but do not as yet appear to have been investigated

theoretically.

It will be assumed that the beads are sufficiently long

for their end regions to be considered isolated: the prob-
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T
Is

Fig. 12. Compensation by contouring bead face. (a) Stepped inner
conductor. (b) Stepped outer conductor. (c) Equivalent circuit.

lern to be treated then is that of compensating the j unc-

tion between two semi-infinite lines of equal charac-

teristic impedance. It is assumed that the transition

region may be represented by a single shunt capacitor

at the plane of the step followed by a very short length

of unmatched transmission line, giving the” equivalent

circuit shown in Fig. 12(c). The object is to determine

the cutout depth IS in the dielectric so that the regions

between the reference planes AA and BB will have a

zero frequency image impedance equal to that of the

adjoining transmission lines.

By terminating the lines with magnetic planes spaced

about a diameter on each side of the reference planes

the problem is readily handled numerically. The ma-

chine calculates the total capacity of the line and by

deduction of the capacities of the terminal lines (as-

sumed unperturbed) gives the net capacity C of the

junction region (transmission line component plus dis-

continuity component) between AA and BB. The zero-

frequency image impedance of the junction network is,

therefore,

(21)

\vhere L = (8/27r) in

tween AA and BB.

b/c is the inductance of the line be-

By computing ZiO for several values of ?i it is easy to

interpolate the depth which gives impedance con-

tinuity. Table VII summarizes the conditions for

match in a 50-ohm line where the dielectric is Teflon

(K. = 2.05) and Fig. 13 shows curves of junction per-

formance against frequency.

F. Butt Junctions in Coaxial Lines

A common requirement in coaxial systems is a low

LTSWR connection bet~veen a line of one size and another

of the same characteristic impedance. This requirement

may arise, for example, in the connection of test equip-

ment brought out to type “N” sockets to large rigid

coaxial cable runs.

Although a taper transition may be used this is

usually bulky and is relatively difficult to machine. A

possible alternative is the offset butt joint shown in

Fig. 14. The design requirement is to make the offset

between the steps in the inner and outer conductors

give sufficient inductance to compensate the excess

capacity of the inhomogeneous field region.

By electrostatic means it is not possible to compute

the individual discontinuity capacities occurring at each

end of the junction region, but it is relatively easy to

determine the total capacity of the junction. This is

sufficient for design even though it is not now, as was

the case with the bead support problem, possible to com-

pute the behavior of the transition with frequency.

The butt transition has been studied experimentally

by Kraus [27] who produced a series of excellent design

curves for lines of 50, 60, and 75 ohms in which the

dielectric medium in the transition region is air. In view

of this and the large number of possible combinations

of standard lines and common dielectric materials, it

has not been thought practical to attempt to provide

generalized data. The program may however be used to

advantage in individual problems, an example of which

will be given.

It was desired to construct a matched butt transition

in a 50-ohm line undergoing a 2:1 step in diameter, the

transition region to be filled throughout with Fluon

dielectric (K. = 2.0). Leading dimensions are shown in

Fig. 14. Offsets increasing in steps of 0.0075 inch from

0.015 inch to 0.060 inch were tried and the image im-

pedance of the transition computed in each case. By

interpolation it was found that an offset of 0.045 inch

preserves continuity of impedance. This transition was

constructed experimentally by Pyle [28] who obtained
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TABLE VII

DIELECTRIC BEAD COMP13NSA113DBYUNDERCUTTINGO FBEAD
FACE

Stepped conductor Undercut (8) (Inch)

Inner 0.036
Outer 0.056

Note:
This data applies for a 50-ohm line with a maximum outer con-
ductor diameter of one inch and a head material of dielectric
constant 2.05.

1.10

1.09

1 08

1,01

~ I .06

3 1.05

ul,.~
>

1.03

1.02

1 -01

1.0
0 I 2345678 910

FREQUENCY (5”/s

Fig. 13. Perfm-mance of beads compensated by facing-out of di-
electric.
Note:
1) Maximum outer conductor diameter =l.000 inch.
2) Dielectrics Teflon (K, =2.05).

r H_uoN (K~. 2.00)

-M-
.045”

Fig. 14. Offset butjunction incoaxial lines of equal
characteristic impedance.

an optimum match also at an offset of 0.045 inch; the

agreement between theory and practice is, therefore,

excellent.

It is of interest to note that without the dielectric

filling the problem would have been equivalent to de-

signing a matched transition in a 71-ohm line. Al-

though Kraus [27] experimentally derived curves do

not include one for this impedance it is within the range

of his work, allowing a value to be interpolated. This

gives an offset of 0.046 inch. This is typical of the excel-

lent agreement that ~vas obtained in a number of cases

between Kraus’ work and the numerically computed

answers.

IV. CONCLCTSIONS

A technique for the solution by finite ditierences of

two dimensional boundary value problems involving

Laplace’s equation was outlined and its application

shown in the development of a program for the numeri-

cal analysis of these problems on a digital machine.

Considerable stress was placed on generality in devis-

ing the computer program, making it possible to solve

an extensive range of large problems with a minin lurn

of effort and at great speed. Its use has been illustrated

in the solution of a number of important transmission

line problems, some leading to the production of [co-

nsiderable design data ~vhich is included in this report.

Because of its generality the program becomes am inv

portant laboratory tool which can be used as an aid in

solving particular design problems as they arise. .h

increased precision is therefore possible in the design of

transmission line components which shcluld elimi Ilate

the need for much empirical development.

APPENDIX A

DEVELOPMENT OF B-ASIC THEORY IN ~

CYLINDRICAL COORDINATE SYSTEM

An outline \rill be given here of the development of a

finite difference equation which represents Laplace’s

equation, written in cylindrical coordinates, for a gen-

eral interior-node subject to the restriction of rotational

symmetry. It will be assumed that the medium bet~reen

the conducting surfaces is homogeneous and that these

conducting surfaces can be drawn in by joining lines of

nodes parallel to the coordinate axes, i.e., the same as-

sumptions as those used to derive (4).

Consider the point P shown in Fig. 15, a node in a

net of mesh width a. Due to balance about the axis only

half the problem need be treated. The convention is,

therefore, adopted throughout this development that

the first row in the net lies along the axis of symmetry.

Let P lie in the lVth row (and for the present assume

N> 1), i.e., on a radius r= (N– l)a. The lpotential at P

must satisfy the equation

~2J/ 1 13v ~2~

~+~~+~=o
(22)

which, unlike its Cartesian equivalent, involves deriva-

tives of the first order.

Nonetheless, a Taylor expansion closely similar to

that used in the main text serves to derive approxi~ma-

tions to these derivatives in terms of the potential dif-

ferences between P and its four immediate neighbors.

Thus

VA + V~ + (1 – a/2f)Vc + (1 + a/2~)V~ – 4VF = O (23)

is an approximation to the Laplace equation at P with

a dominant error

[ 1
;: $+~+:8: ,~=— (24,)
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P

Fig. 15. Cylindrical coordinate system. Mesh
representation for no variation with d.

i.e., in the order az, as before. Equation (23) may be

further simplified by substituting for the radius in

terms of the position of P in the net, thus

Special interest attaches to nodal points in row 1. As

the radius is then zero and since, due to symmetry, all

odd-order derivatives must be zero, the middle term of

equation (22) assumes an indeterminate (0/0) form in

this case. Consequently, difficulty may be eliminated by

reverting to the Cartesian form of the Laplace equa-

tion, for which purpose a w axis is introduced to forlm

the third of an orthogonal set with the r and z axes

(Fig. 16). The point P must then satisfy

132V (32V (32V
~+;+~’o. (26)

This is not, of course, peculiar to the axis of sym-

metry; any point in the space between the conductors

must satisfy (26). It has not been generally applied,

since, on all but the axis of symmetry, it leads to a

three-dimensional net. In this one particular case, by

symmetry

Vc=VD=VE=V~,

and therefore expanded in finite difference form (26)

leads to the two-dimensional form

4v~ + l’~ + 4V~ – 6Vp = O. (27)

The calculation of charge from the potential distribu-

tion is based upon similar principles to the Cartesian

case but the numerical procedures are materially al-

tered. There is no difference in finding the normal com-

ponent of displacement through the surface of integra-

b ?Q

Fig. 16. Cylindrical coordinate system point on centerline.

tion, i.e., (8) remains valid, but the method of integra-

tion over the surface is different, Two kinds of surfaces

need to be distinguished; these are surfaces of constant

r, or cylinders about the axis of symmetry; and surfaces

of constant z, or plane annular surfaces normal to the

axis of symmetry. A given surface of integration will, in

general, be generated by the interconnection of s sub-

surfaces, some of each kind.

For a cylindrical surface in the ith row containing r

nodes

()
Q’ = 27T(i – I)u’e ~’ ~

P=l d?’ p“

(28)

For an annular surface in the -jth column spanning be-

tween the kth and mth rows

m—k+ 1

()
Q’=Ta2t ~~ (k+ P+8–2) fl (29)

dz p“

The total charge is therefore

Q=~Q’. (30)

APPENDIX B

SPECIAL FINITE-DIFFERENCE EQUATIONS

Both in the main text and in Appendix A, only finite-

difference representation of ordinary interior nodes has

been considered (with the one exception of points along

the axis in a cylindrical system). lVIost nodes will fall

into this category but to take account of all possible

boundary conditions there are 28 other possible condi-

tions which may arise.

Having read in details of conductor boundaries and

the disposition of dielectrics the machine is made to

scan the net, node by node, to identify whether they
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are ordinary interior points or one of the exceptional nary interior node; if the node was included, the lna-

cases. If found to be the latter, the node number is re- chine is directed to a special equation appropriate to the

corded in an ‘ioddity table” (generated automatically kind of oddity. The finite difference equations for each

by the machine) together with a further identification of the 28 types of oddity are listed in Table VIII for

number. According to the convention indicated in both Cartesian and cylindrical systems. Since each of

Table VII I, these criteria indicate in what way the node these equations may be derived by application of

is exceptional. Taylor’s theorem, individual proofs will not be given.

When the equations of the potentials are being solved

the machine first determines whether that node was ACKNOWLEDGM13NT

hrcluded in the oddity table. If it was not, the point k It k a great pleasure to acknowledge the painstaking

relaxed according to the standard equation for an ordi- efforts of B. P. J1c Do117all of lllaths Services Group in

TABLE VII I

SPECIAL FINITE DIFFERENCE EQUATrOiW

00DTY h

I

2

3

A

5

DESCRIPTION FIGURE CAR-TESIAN EQUATION

—
CYLINDRICAL EQUATION

.

SEE AEGENDIX 1, EQUATION GO)2DINARY INTERIoR PoINT ‘-hc 3EE TExT, EQUATION (4)

!LL
‘T
‘lB
aA:

SEE APPIZNDIX 1, EQuATION (32)

VA+ VB+2VC -4vp = 0

4(N-1) VB+(2N-3)VC+ (2 N-)VD - IS (N-I) V’ .0

51MPLE PERMUTATION OF @l)

?DINARY POINT BOTTOM EDGE d4, +v~+2vD-4vp .0

SIMPLE PERMUTATlON OF (2)

;lMPLE FERMUTATION OF (2)

; IMPLE PE RMu TATION OF (2)

ToP EDGE

LEFT- HAND EDGE

RIGHT- HAND EDGE

3RNER POINT ,%.
.41:

‘L-’
‘-l’ —

D

+
ADB

c

-i-

D

A ,B

4-
0

.
B

.

G

7

e

9

30T TOM

0P

—

Row
4TERFAcE

:OLUMN

NTERFACE

U. FT-HANO 51DE lR+vD-2vp = 0

SIMPLE DE R,WJTATION OF (6)

i IMPLE PERMLJTATION OF (6)

;IMPLE PERMuTATION OF (6)

+Ke)VA+(l+Ke)VB + 2 Vc+ 2Ke VD

4fl+Ke)vp=0

V8 + 2VC, - 3V9 ~ 0

SIMPLE PERMUTATION OF (G 1

,VB+VC.2VP= 0

SIMPLE PERMUTATION OF ~3)

RIGHT-HAND SIDE

LEFT. HAND 51DE

RJGHT-HAND 51DE

{2 N(ke+l)-(Ke+3)j VA+ {2N(Ke ~1)- (Ke 3)3VB

2(2N-3)VC+’2 Ke(2N-l)VD- 4{2N(Ke+l)- (Ke+3)]V~

?

N(K~+l -(3X,+))] vA+ [2N(KC +!) -(3Ke + I)} vB + 2Ke(2N -3) vc

?(ZN-I VD - 4(2 N(Ke+I)-(3Ket i)} vp. o

I ke(k - I ) V& + 4 (N - l)VB+(2N-3)(Ke+ l)V<S(2 N-)(%+1) VD

8(N-l)(Ke+l) Vp =0

51MD[. E DEF?,”AU ‘TATION OF ~ 2)

4(N-I)VA+ {2 N(K=+ l)- (K=+3)3 VB+2@-3)VC-

zN-) (Ke.I)VD-2[2N(Ke +3)-(Ke +’7)}VP = o

SIMPLE PERMUTATION OF (4)

DIELECTRIC
NTERI=ACE

10

II

12

13

1 ‘IELECTRIC TO TO!=

DIELECTRIC

TO BOTTO,M
5bvR_E PER MuTATlON oF(Ic

DIELECTRIC TO

LEFT- HAND SIDE
SIMPLE PERMUTATION OF (jo

DIELECTRIC TO

RIGHT- HAND SIDI
SIMPLE PERMUTATION OF ~O;

-1-P
,!3

--1-A ‘B

-/-,,
+P

b..

2VA+(K=+I)VS+ 2VC + (Ke+ I)VD

2(K=+3)VP = O

14

15

16

17

18

19

20

21

ANGLE

)IELECTRIC
ACUTE FIPSTQUAOQAN-

5ECOND QUADRAb

THIEO Q_BDRAN-

FOURTH QUADR.AN-

51MPLE PERMUTATION OF (14;

2N(Ke+ 1)-(3Ke+ I)] VA+ 4(N-) V8+(2iV-3~Ke+~~ 2@N-~ I/D

‘2 @N(K e+3)-(3Ke + 5)~ VP .0
5 IMPLE PERMuTATION OF (14;

51MPLE PERML! TAT ION OF (14’ 51MPLE PERMuTATION OF @)

+
A’

-/-
A PB

+

APB

-F. ..

I(N - I) VA+ {2 N (K.+ 1)- (Ke+ 3>]VB+2&N-2N<2N -lYK..l) VD

-4(N-l)(3Ke.1) Vp= 0

51MPLE PERMUTATION OF (18)

2N(Ke+l)-~Ke +3)] VA+ 4(N-l)vB+ (2 N-3)(Ke+l) vc ~

2(2N-1) V. -4 (K+ 3)(N-1) L’p = 10

51MPLE PERMUTAT~ON OF (20)

2 Ue VA+(Ke+ 1) VB + 2 Kevc+(K.+~

-2(3 Ke+l) vp= 0
IBTu5E FI R5T QuADRANT

SECOND QUAORAN1

THIRD QUADRANT

FCURTU QL1.MX?Ah

SIMPLE PERMUTATION OF (la;

SIMPLE PERMUTATION OF (18)

SIMPLE PEQkUJTATION OS@
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Table VII I (cwrtin’d)

ODDITY N

22

23

24

25

26

2-I

26

29

DESCRIPTION

I

ELECTRIC

JTERFAC E TO -

BOTTOM DIELECTRIC TO

EDGE LEFT- HAND SIDE

p::yc-rm~~::
~

TOO EDGE !
‘3 ELECTRlc TO

~LEFT.HAND 5,0,

DIELECTRIC TO

ID,GI.T-HANDSIO,

DIELECTRIC TO
60TTOM

RIGHT-HAND DIELECTRIC TO

EDGE TOP

OIELECTR!C 70

BOTTOM

FIGURE I CARTESIAN EOLIATION i CYLINDRICAL EOUATION

&, K~ VA+ VB+(Ke + I) VO+2(Ke+l)vP = o KevA+v’+2(Ke+1)vD - 3(Ke+’) VP = o

L
AB

51MDLE PERMUTATION oF(Z) SIMPLE PERMUTATION OF (22)

,8

T
P 51MPLE PE RM UT,ATloN OF(29 (2 N-3) Ke,vA+ C2N-3) VB ‘(2N-3) (Kc’ I)vc

-2(2 N-3)(Ke+l)Vp=0

‘T’ !SIMPLE PERMUTATION 0F(2Z) SIMPLE PERMUTATION OF (24)

c

p.B SIMPLE PERMUTATION OF @z)
{2 N(Ke*l)-(~.e+3) ]vB+ (2N-3) VC + (2N -1) Ke”n

~

L

‘2~2N(,Ke+1)- (K=+3)_j Vp.0

‘B ~)MpLE ~ER&,uTA7,0N ~, ~22j {2 N (Ke + \ ) - (3Ke+ ,)} VB+ (2N-3) Ke V’CT(2N-) VD
-2~2N(Ke+ l)-(3~+l)~Vp=0

c

4

&p
SIMPLE PERMuTATIoN OF (22) SIMPLE PERMUTATK3N OF ~2G)

‘
D

d
b.’

SIMPLE PERMUTATION OF (i2) 51MPLE PERMUTATION OF (27)
c

I

the development of the program. For reasons of speed,

some of the more frequently repeated subroutines were

coded in FAP; these were written in their entirety by

B. P. McDowall. He also contributed many useful ideas

throughout the remainder of the work and it is in no

small measure due to his efforts that the project was

brought to successful conclusion.

The author aIso wishes to thank C. T. Carson for

making it possible to undertake this work and the Chief

Scientist of the Department of Supply for permission to

publish it.
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